Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE
نویسندگان
چکیده
Magnesium is the most abundant divalent cation in living cells and is crucial to several biological processes. MgtE is a Mg(2+) channel distributed in all domains of life that contributes to the maintenance of cellular Mg(2+) homeostasis. Here we report the high-resolution crystal structures of the transmembrane domain of MgtE, bound to Mg(2+), Mn(2+) and Ca(2+). The high-resolution Mg(2+)-bound crystal structure clearly visualized the hydrated Mg(2+) ion within its selectivity filter. Based on those structures and biochemical analyses, we propose a cation selectivity mechanism for MgtE in which the geometry of the hydration shell of the fully hydrated Mg(2+) ion is recognized by the side-chain carboxylate groups in the selectivity filter. This is in contrast to the K(+)-selective filter of KcsA, which recognizes a dehydrated K(+) ion. Our results further revealed a cation-binding site on the periplasmic side, which regulate channel opening and prevents conduction of near-cognate cations.
منابع مشابه
Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR
Magnesium ions (Mg2+) are divalent cations essential for various cellular functions. Mg2+ homeostasis is maintained through Mg2+ channels such as MgtE, a prokaryotic Mg2+ channel whose gating is regulated by intracellular Mg2+ levels. Our previous crystal structure of MgtE in the Mg2+-bound, closed state revealed the existence of seven crystallographically-independent Mg2+-binding sites, Mg1-Mg...
متن کاملMg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study.
Proper regulation of the intracellular ion concentration is essential to maintain life and is achieved by ion transporters that transport their substrates across the membrane in a strictly regulated manner. MgtE is a Mg(2+) transporter that may function in the homeostasis of the intracellular Mg(2+) concentration. A recent crystallographic study revealed that its cytosolic domain undergoes a Mg...
متن کاملThe unique nature of mg2+ channels.
Considering the biological abundance and importance of Mg2+, there is a surprising lack of information regarding the proteins that transport Mg2+, the mechanisms by which they do so, and their physiological roles within the cell. The best characterized Mg2+ channel to date is the bacterial protein CorA, present in a wide range of bacterial species. The CorA homolog Mrs2 forms the mitochondrial ...
متن کاملNpgRJ_Nsmb_1311 1089..1095
K+ channels conduct and regulate K+ flux across the cell membrane. Several crystal structures and biophysical studies of tetrameric ion channels have revealed many of the structural details of ion selectivity and gating. A narrow pore lined with four arrays of carbonyl groups is responsible for ion selectivity, whereas a conformational change of the four inner transmembrane helices (TM2) is inv...
متن کاملExploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport
The CorA family of divalent cation transporters utilizes Mg2+ and Co2+ as primary substrates. The molecular mechanism of its function, including ion selectivity and gating, has not been fully characterized. Recently we reported a new structure of a CorA homologue from Methanocaldococcus jannaschii, which provided novel structural details that offered the conception of a unique gating mechanism ...
متن کامل